LINEAR ALGEBRA (Part-2) - Multiplying Matrices
LINEAR ALGEBRA (Part-2)
Multiplying MatricesStandard Calculation
We can add, subtract, divide or multiply a matrix with a scalar value. These operations will be element wise. Let's consider a 3✖2 Matrix A3,2. See below.
A3,2 = | [ | |||||||||||
1 | 2 | |||||||||||
2 | 3 | |||||||||||
3 | 1 | |||||||||||
] |
Let's add a scalar value 5 with it.
A3,2 = | [ | A3,2 = | [ | A3,2 = | [ | ||||||||||||||||
1 | 2 | 5✚1 | 5✚2 | 6 | 7 | ||||||||||||||||
5 | ✚ | 2 | 3 | = | 5✚2 | 5✚3 | = | 7 | 8 | ||||||||||||
3 | 1 | 5✚3 | 5✚1 | 8 | 6 | ||||||||||||||||
] | ] | ] |
Let's subtract a scalar value 5 with it.
A3,2 = | [ | A3,2 = | [ | A3,2 = | [ | ||||||||||||||||
1 | 2 | 5➖1 | 5➖2 | 4 | 3 | ||||||||||||||||
5 | ➖ | 2 | 3 | = | 5➖2 | 5➖3 | = | 3 | 2 | ||||||||||||
3 | 1 | 5➖3 | 5➖1 | 2 | 4 | ||||||||||||||||
] | ] | ] |
Let's multiply a scalar value 5 with it.
A3,2 = | [ | A3,2 = | [ | A3,2 = | [ | ||||||||||||||||
1 | 2 | 5❌1 | 5❌2 | 5 | 10 | ||||||||||||||||
5 | ❌ | 2 | 3 | = | 5❌2 | 5❌3 | = | 10 | 15 | ||||||||||||
3 | 1 | 5❌3 | 5❌1 | 15 | 5 | ||||||||||||||||
] | ] | ] |
Let's divide a scalar value 5 with it.
A3,2 = | [ | A3,2 = | [ | A3,2 = | [ | ||||||||||||||||
1 | 2 | 5➗1 | 5➗2 | 5 | 2.5 | ||||||||||||||||
5 | ➗ | 2 | 3 | = | 5➗2 | 5➗3 | = | 2.5 | 1.67 | ||||||||||||
3 | 1 | 5➗3 | 5➗1 | 1.67 | 5 | ||||||||||||||||
] | ] | ] |
Standard Multiplication
It is also called Standard Product. The standard multiplication of matrix A and B will be another matrix C. Matrix are represented by row ✖ column. If matrix A is 3✖2 and B is 3✖2 then resultant matrix C will also be 3✖2 matrix. We can represent it by C3,2 = A3,2 ⊙ B3,2
For standard multiplication both matrix have to be of same size. It will be a element wise multiplication. Lets see below
Similarly we can also do addition, subtration and division also.
A3,2 = | [ | B3,2 = | [ | C3,2 = | [ | A3,2 = | [ | |||||||||||||||||
4 | 5 | 1 | 2 | 4❌1 | 5❌2 | 4 | 10 | |||||||||||||||||
5 | 6 | ⊙ | 2 | 3 | = | 5❌2 | 6❌3 | = | 10 | 18 | ||||||||||||||
6 | 4 | 3 | 1 | 6❌3 | 4❌1 | 18 | 4 | |||||||||||||||||
] | ] | ] | ] |
Similarly we can also do addition, subtration and division also.
Matrix Multiplication
It is also called Matrix Product. The multiplication of matrix A and B will be another matrix C. Matrix are represented by row ✖ column. If matrix A is 3✖2 and B is 2✖4 then resultant matrix C will be 3✖4 matrix. We can represent it by C3,4 = AB
For Matrix Multiplication the column size of one matrix have to be equal to row size of another matrix and vice versa. Let's see the multiplication below.
A3,2 = | [ | B2,3 = | [ | C3,3 = | [ | A3,3 = | [ | ||||||||||||||||||||||
4 | 5 | 1 | 2 | 3 | 4❌1 ➕ 5❌2 | 4❌2 ➕ 5❌3 | 4❌3 ➕ 5❌1 | 14 | 23 | 17 | |||||||||||||||||||
5 | 6 | • | 2 | 3 | 1 | = | 5❌1 ➕ 6❌2 | 5❌2 ➕ 6❌3 | 5❌3 ➕ 6❌3 | = | 17 | 28 | 33 | ||||||||||||||||
6 | 4 | ] | 6❌1 ➕ 4❌2 | 6❌2 ➕ 4❌3 | 6❌1 ➕ 4❌1 | 14 | 24 | 10 | |||||||||||||||||||||
] | ] | ] |
মন্তব্যসমূহ
একটি মন্তব্য পোস্ট করুন